

Innovating with nature towards integrated landscape management:

ALICE project

Edna Cabecinha et al.

UTAD/CITAB/ IUCN CEM edna@utad.pt

ALICE TEAM

Improving the management of Atlantic Landscapes accounting for blodiversity and eCosystem sErvices

- ✓ Develop a full package of new methods, tools and procedures to assist with coastal and inland landscape management
- ✓ Targeting and stimulating NbS investment within the 4 CS by quantifying the benefits for ES, including biodiversity conservation
- ✓ Identify solutions for the economic and social barriers which may limit investment in NbS in each of the 4 CS
- ✓ Provide stronger scientific and socioeconomic support for the effective implementation of future NbS and environmental policy.

ALICE CASE STUDIES

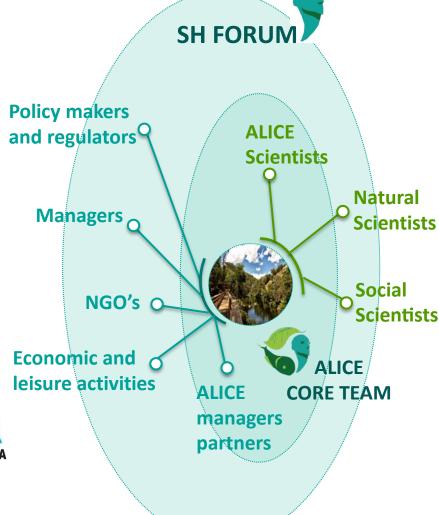
France, Couesnon River

Spain, Pas, Miera and Asón

Portugal, Paiva

PT STAKEHOLDER FORUM

Stakeholders



ENGAGEMENT TIMELINE

1ST WORKSHOP

Identify the main environmental problems

Collaborative Mapping

Castro Daire FEB 2020

3rd WORKSHOP

Scenario Building & Multicriteria analysis

Collaborative Mapping

2050

MAR 2019 Castro Daire

2nd WORKSHOP

Identify the main NbS & Barriers

Collaborative Mapping

MAR 2021 Online

ERVENÇÃO PRIORITÂRIA - grupo 1 Para para la management de la management d

FUTURE

Paiva's Green Commitment Strategy

PARTICIPATORY PROCESS

1ST STAKEHOLDER WORKSHOP

IDENTIFICATION OF MAIN ENVIRONMENTAL ISSUES IN THE WATERSHED

		PRIORITIZED ISSUES	JP		
1) Water quality - Avi Daire: in Alvarenga to Paiva; 2) Invasives (low Pai occur they generat 3) Tourism massificat village of Nesperei plantations up to ti 4) Strong pressure to and biodiversity va increases the direc	1	Water Quality	(Castro <u>Daire</u> , Vila Nova de nment); iked to <u>invasives</u> and urist Pressure; It can be lems is that of the low		
	2	Territory management			
Fires that generate problem, but may Poor land manage	3	Forest Fires / Floods	ct discharges to the river); If the forest originate fires that in turn		
	4	Invasive species			
3) Quarry in Monge (arsenic) 4) Water abduction (5) Increasing river be 6) Invasive species: r 7) When the burned	5	Tourism pressure	ork or work poorly; he river is channeled and waterproof (a) and the min! hydroids present in t) with ongoing investments and some the absence of forest management. cause it goes directly to the river		
	6	Livestock			
	7	Biodiversity losses			

COLLABORATIVE MAPPING

Ö

IDENTIFICATION OF THE MAIN ES

■ The SH Identified the main **Regulation**, **Provisioning & Maintenance** and **Cultural ES** in Paiva's Watershed

STRATEGIES FOR Nbs implementation

MAIN SOCIO-ENVIRONMENTAL ISSUES MAIN ENVIRONMENTAL CHALLENGES

MAIN ACTIONS REQUIRED

Reconnection of river to floodplain

Restoration of longitudinal connectivity

Erosion control

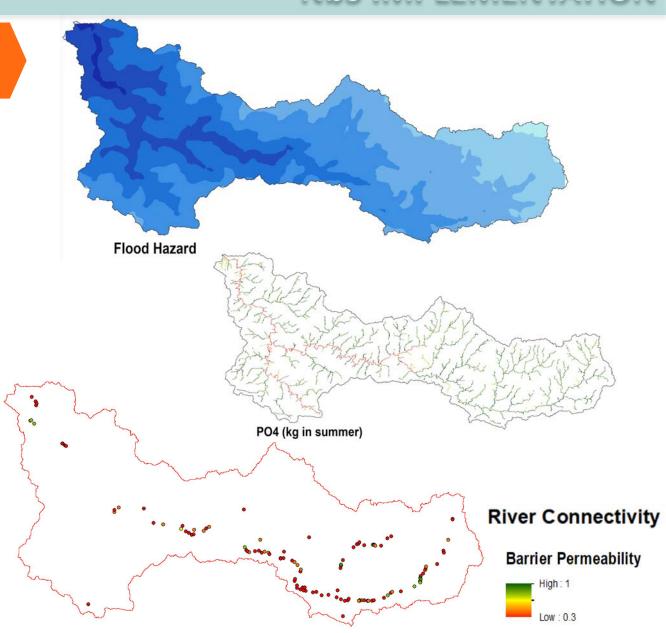
Best Management Practices

NBS APPROACHES

STRATEGIES FOR Nbs implementation

MAIN SOCIO-ENVIRONMENTAL ISSUES

MAIN
ACTIONS REQUIRED


Reconnection of river to floodplain

Flood risk reduction

NBS APPROACHES

Improving barriers permeability

Pollution control

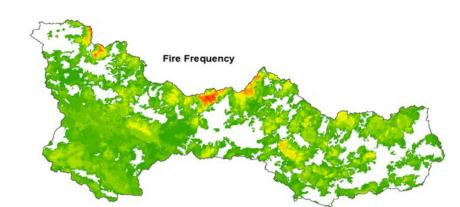
Nbs implementation

MAIN SOCIO-ENVIRONMENTAL ISSUES

MAIN
ACTIONS REQUIRED

Landscape heterogeneity

Fire risk reduction


NBS APPROACHES

Erosion control

Best Management Practices

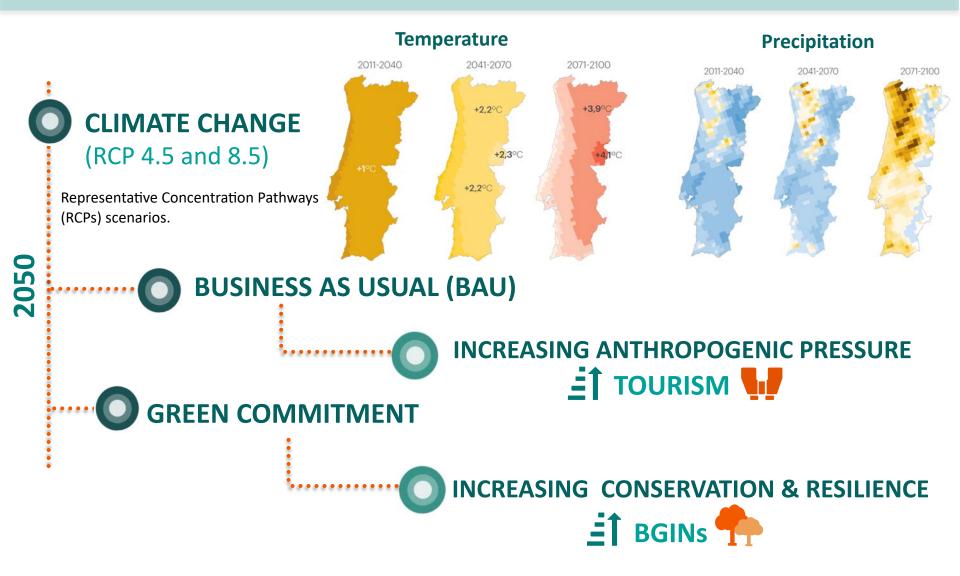
Fire Hazard (2019)

Nbs selection

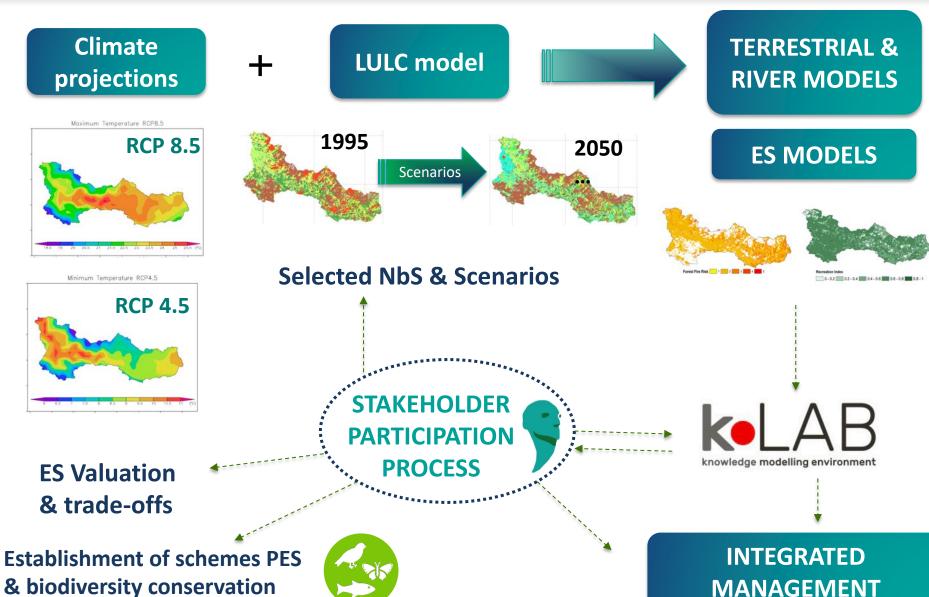
WATER MANAGEMENT

NbS Where needed?

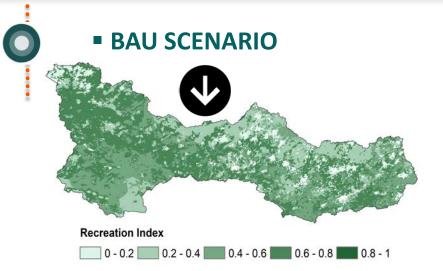
Νº	IAV	DESCRIÇÃO	SERVIÇOS & BENEFICIOS	ÁGUA	CHEIAS	FOGO	IMAGENS
1	Recuperação/manutenção da vegetação ripícola	Plantação de espécies de árvores como o choupo (<i>Populus sp.</i>), o salgueiro (<i>Salix sp.</i>) e o amieiro (<i>Alnus sp.</i>). A temperatura da água diminui, aumenta a estabilização do solo, reduz a erosão e previne a entrada excessiva de sedimentos e nutrientes no curso de água.	2) 1Qualidade do ar e da água3) 1Saúde e Bem-estar				
2	Construção de leitos de macrófitas	Sistemas de tratamento naturais com introdução de espécies como a <i>Phragmites</i> sp. e <i>Scirpus</i> sp. em zonas húmidas que permitem o tratamento sustentável de águas residuais domésticas e industriais em pequenos aglomerados populacionais ou pequenas indústrias.	 †Controlo da erosão e retenção de sedimentos 				
3	Consolidação e recuperação de margens através de técnicas de engenharia natural	Técnicas construtivas utilizando sistemas e materiais vivos e inertes, potenciando a prevenção de riscos naturais como a erosão, o fogo ou movimentações de massas de terra (aluimentos, escorregamentos), desenvolvendo sistemas mais próximos do natural do que a aplicação de técnicas de Eng. Civil. Ex. Muros de Cribwall, faxinas vivas, grade viva).	 2) †Qualidade do ar e da água 3) †Saúde e Bem-estar 4) †Controlo da erosão e retenção 				
4	Criação de zonas húmidas para controlar as cheias	As zonas húmidas constituem massas de água, temporárias ou permanentes. Estas áreas são de grande importância para a biodiversidade, contribuindo para a manutenção e melhoria da qualidade da água. Podendo adicionalmente servir de bacias de retenção diminuindo os riscos de cheia.	1) †Regulação de perturbações ambientais 2) †Controlo da erosão e retenção de sedimentos 3) † Recreação 4) †Biodiversidade				
5	Instalação de dispositivos de transposição	Criação de bacias sucessivas e passagens para peixes naturalizadas. Permite o restabelecimento da conectividade e a recuperação de habitats, bem como a migração de espécies de peixes como a Truta, o Barbo, a Boga, etc.	1) †Biodiversidade				
6	Plantação de Prados Naturais	Áreas ocupadas por herbáceas, por períodos iguais ou superiores a 5 anos. Esta vegetação, para além de ser um importante habitat para inúmeras espécies, desempenha um papel no controlo da erosão dos solos e na prevenção de fogos, uma vez que permite a quebra de monoculturas.	1) †Regulação do clima 2) †Qualidade do ar e da água 3) †Controlo da erosão 4) † Recreação 5) †Biodiversidade 6) †Produção animal sustentável				

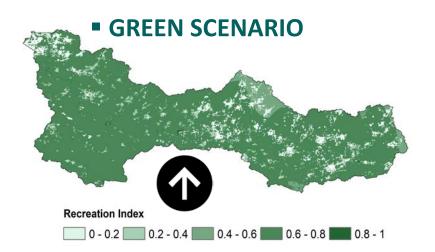


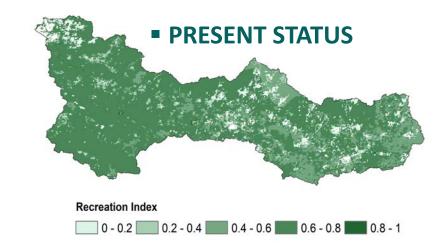
BARRIERS to NbS



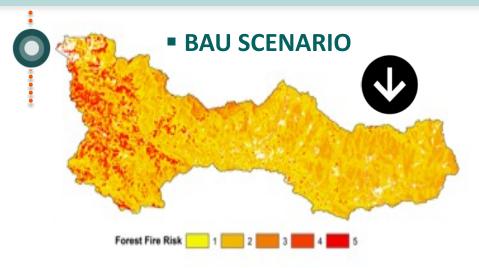
SCENARIO BUILDING

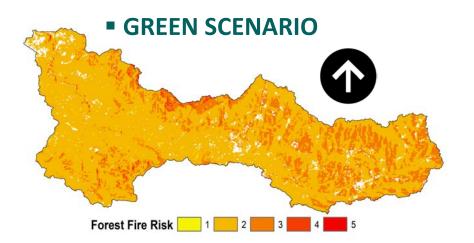

INTEGRATED MODELLING

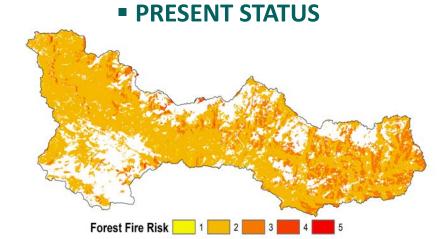



CULTURAL ES

OUTDOOR RECREATIONAL ACTIVITIES

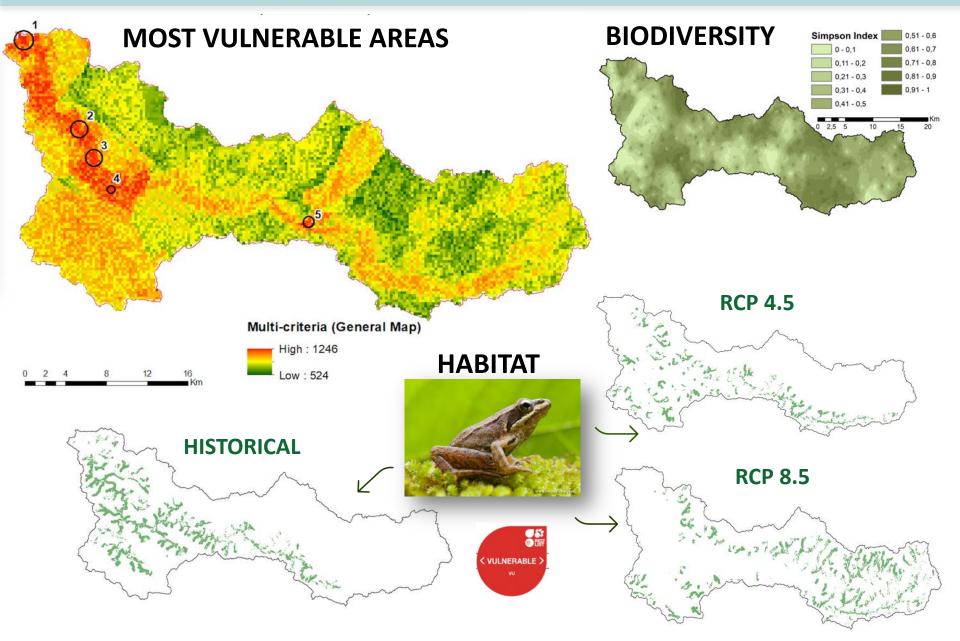





REGULATING SERVICES

FIRE RISK REGULATION





PAIVA's NbS STRATEGY

PAIVA's NbS STRATEGY

SOCIETAL CHALLENGES ADDRESSED

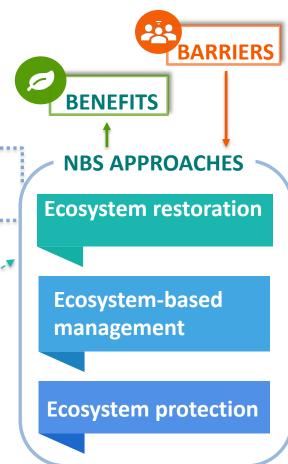
Water security

Food security

Human Health

Climate Change

Disaster Risk reduction


Economic & Social Development

Environmental degradation & Biodiversity loss

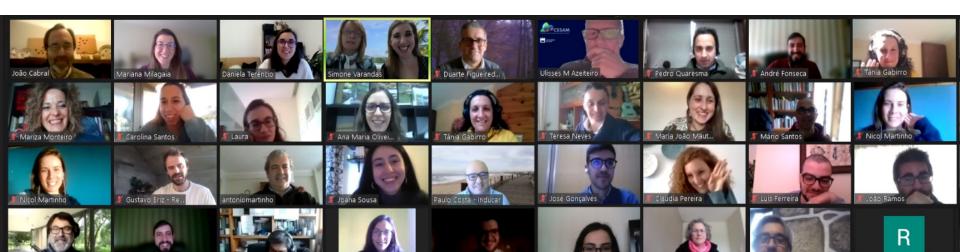
IUCN, 2020

Cohen-Shacham et al., 2019

PARTICIPATORY PROCESS

Schemes for payment of ES & biodiversity conservation

Legislation & Policy instruments



ALL TOGETHER

BOOSTING A PARADIGM SHIFT

IMPROVING COOPERATION AMONG INSTITUTIONS TO AN INTEGRATED ACTION IN THE TERRITORY

Thank you!!

Edna Cabecinha edna@utad.pt

http://project-alice.com

